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The linear array of nucleosomes that comprises the primary
structure of chromatin is folded and condensed to varying
degrees in nuclei and chromosomes forming ‘higher order
structures’. We discuss the recent findings from novel
experimental approaches that have yielded significant new
information on the different hierarchical levels of chromatin
folding and their functional significance. 
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Abbreviations
3D three-dimensional
FRAP fluorescence recovery after photobleaching
GFP green fluorescent protein

Introduction
It is becoming increasingly clear that chromatin higher-
order structure (i.e. organization beyond the level of the
linear array of nucleosomes) plays a critical role in many
aspects of gene regulation (e.g. see [1]), perhaps extending
even to complex processes such as aging [2]. Moreover,
many large-scale and local chromatin-remodeling events
involve modulations of the charge balance between his-
tones and DNA [3–7], which induce changes in chromatin
compaction. A full understanding of these manifestations
of chromatin ‘higher-order structure’ and their functional
significance will require knowledge of the 3D arrangement
of components and the mechanisms and dynamics of their
assembly and disassembly. 

To simplify the discussion, we propose a new hierarchical
classification scheme for chromatin based loosely on that

used for proteins, in which all levels above the primary
structure constitute a form of ‘higher order’ (Table 1).
Until more sequence-specific information is known, it is
necessary to differentiate at all levels between global struc-
tures (cases where the underlying DNA sequence is not
known, and the structural information is generic), and local
structures (cases where the underlying DNA sequence and
perhaps nucleosome positioning is defined, and the struc-
tural information is specific). The scheme allows further
expansion as needed — for example, the quaternary level
may be required for metaphase chromosomes. 

This review focuses on the significant progress that has
been reported recently in a few selected areas, concentrat-
ing on chromatin secondary structures and mitotic
chromosome architecture. Larger-scale chromatin organi-
zation and dynamics in the interphase nucleus,
representing tertiary and perhaps higher levels, has been
reviewed recently [8–12].

Global secondary structures — conformation of
arrays of H1-containing nucleosomes
The majority of work on global secondary structures has
focused on the ‘30 nm’ chromatin fiber — a ubiquitous
conformation adopted, at least in vitro, by arrays of nucleo-
somes containing H1-type linker histones. Evidence
concerning the bulk physical and biochemical properties of
isolated chromatin together with direct imaging of individ-
ual assemblies has led to two principal concepts of fiber
architecture: solenoids in which the linker DNA continues
the supercoil established in the nucleosome, and zig-zag or
crossed linker models in which the linker crosses the fiber
(reviewed in [13–18]). Hydrodynamic studies of defined
chromatin arrays have helped establish the critical role of
the core histone amino termini in the formation of 
secondary structures, and have clearly demonstrated that
chromatin folding, at least in vitro, should be viewed in
terms of a dynamic equilibrium between compaction 
levels ([19]; Hayes and Hansen, this issue [pp 124–129]).
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Table 1

Proposed hierarchical classification scheme for chromatin structures.

Level of chromatin structure Examples of global structures Examples of local structures

Primary — The linear arrangement of features such as The nucleosome repeat length. Preferred locations of nucleosomes and features
nucleosomes on DNA. such as DH sites on a specific DNA sequence

(e.g. [30,73]).

Secondary — Structures formed by interactions of The ‘30 nm’ chromatin fiber. 3D architecture of nucleosomes and regulatory
nucleosomes. proteins on a specific DNA sequence 

(e.g. [31,33,36•]).

Tertiary — Structures formed by interactions between Thicker fibers seen in nuclei and  Long-distance contacts possibly involving
secondary structures. postulated to be composed of locus control regions, enhancers and promoters 

30 nm fibers. [74], or looped chromatin domains [75].
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In terms of the architecture of chromatin secondary struc-
tures, recent new approaches, coupled with sophisticated
modeling, have established constraints on possible chro-
matin architectures. Rydberg et al. [20••] have utilized the
physics of DNA breakage by ionizing radiation in which a
single hit results in a shower of secondary particles that
induce spatially correlated single-strand breaks. Secondary
hits thus tend to concentrate within nucleosomes that are
neighbors in 3D space and the observed lengths of single-
stranded DNA fragments can be compared with
predictions of model structures. After irradiating living
cells, the predicted major peak of DNA fragment size
occurred at 78 bases resulting from two hits within a single
nucleosome. Of more interest in terms of chromatin sec-
ondary structure was the distribution of DNA fragments in
the 300–1000 base range, and comparison of these data
with theoretical predictions based on generic solenoid and
zig-zag models. The fragment sizes showed a remarkably
good fit to predictions of zig-zag secondary structures but
the predicted peak at ~1000 bases corresponding to one
turn of a six-nucleosome/turn solenoid was not observed.
Control experiments showed that permeabilized cells
exposed to low salt showed no peaks corresponding to
chromatin secondary structures, confirming that this treat-
ment effectively abolishes all but the primary structure. 

The fact that these experiments can be performed on liv-
ing cells makes the strategy especially significant. It is
well established that chromatin conformation is greatly
influenced by the ionic milieu, yet the in nucleo levels of
cations and polyamines are not known with any certainty.
Thus, any congruence between in vivo and in vitro data is
particularly valuable.

In a completely different approach, Cui and Bustamente
[21••] used molecular tweezers (capture and manipulation
by laser beam) to grasp the ends of isolated chromatin
fibers and document force–length relationships during
stretching and relaxation. Molecular modeling based on
these data, the known mechanical properties of DNA, and
the structure of the chromatosome [22••], converged on an
irregular, fluctuating zig-zag structure (Figure 1), similar to
that predicted from electron cryo-microscopy [23••]. An
independent modeling study [24] starting from the two-
angle zig-zag model [25], derived mechanical properties
similar to those measured in [21••]. Data from atomic force
microscopy also support a zig-zag secondary chromatin
structure [16,17] and the instrument can, in principle, also
be used to generate force–length relationships of chro-
matin fibers. To date, however, the forces recorded using
atomic force microscopy [26] have been much larger than
those measured with molecular tweezers or predicted by
theory, perhaps because of poorly understood interactions
between chromatin and substrate.

Importantly, the force–length relationships reported by
Cui and Bustamente [21••] reveal a weak inter-nucleoso-
mal attraction which allows chromatin to become highly

compact at intermediate salt concentrations. Identifying
the molecular basis of this attraction, which may involve
the core histones [27] and/or occur between histone amino
termini and linker DNA (Hayes and Hansen, this issue
[pp 124–129]), will be an important future goal. 

At present, the weight of evidence from these new
approaches, and also from detailed analyses of the products
of chromatin digestion in nucleo [28] favor a zig-zag confor-
mation. It is clear that native chromatin can have a more
extreme compaction level than predicted from simple
close-packing of 30 nm fibers [29•] — whether this results
from an altered secondary chromatin structure in the high-
ly compact state, or from a tertiary structure, perhaps
involving the side-to-side interdigitation of 30 nm fibers
[15], remains to be seen. 

Local secondary structures
Chromatin-mapping studies of individual genes have
revealed very specific local primary structures comprising
positioned nucleosomes, DNase I hypersensitive sites, and
binding sites for regulatory proteins and complexes (e.g.
see [30,31]). It appears likely that in many cases the func-
tional unit is not the linear array of elements but a local
secondary chromatin structure in which one or more nucle-
osomes, together with regulatory and/or transcriptional
complexes, form a distinct 3D assemblage in the nucleus
(e.g. see [32,33]).

A full understanding of such units will require a 3D mol-
ecular level model of the local chromatin structure and its
modulations and will probably emerge, as in other fields
[34], through the fitting of X-ray structures of individual
components into envelopes derived from lower-resolu-
tion microscopy techniques. This type of approach
requires the isolation from bulk chromatin of the nucleo-
somal array in question, and techniques for achieving this
have recently been developed. Site-specific recombina-
tion in yeast was used to produce circular chromatin

Figure 1

Models of chromatin secondary structure at different levels of extension
(Fext), based on force–distance measurements of individual chromatin
fibers. (Fext is the extension force applied.) Modified from [22•• ].

Fext = 0.5 pN

Fext = 5 pN

Fext = 20 pN
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arrays containing the silent HMR locus which retained
associated Sir proteins and a repressive chromatin struc-
ture in vitro [35]. Another successful yeast strategy was
the use of minichromosome plasmids containing a portion
of the STE6 gene which is differentially expressed
according to mating type. In minichromosomes isolated
from the repressed α strain, the Tup1p corepressor was
confined to the STE6 nucleosomes, each of which 
contained two molecules [36•]. With X-ray structures of
the nucleosome core particle [27] and large portions of
Tup1p and its corepressor Ssn6 published [37–39], all the
factors required for the goal of relating repression to a
specific chromatin secondary structure are available.
Reconstitution in Drosophila embryo extracts has been
used successfully to create MMTV (mouse mammary
tumor virus) promoter chromatin in vitro [40•]. The
reconstituted material bound glucocorticoid receptor,
inducing ATP-dependent chromatin remodeling. These
advances will most likely lead to a better understanding
of unique sequence chromatin secondary structures.

Structure of mitotic chromosomes
Despite the efforts of generations of cell biologists, the
basic architecture of mitotic chromosomes as well as the
hierarchical level of chromatin structure they represent
(see Table 1) are poorly understood. Significant advances
in our knowledge of mitotic chromosome condensation
and structure, however, have recently come from two
complementary approaches: yeast genetics and biochem-
ical manipulations of mitotic extracts prepared from
Xenopus eggs. This has led to the discovery of new macro-
molecular complexes that play a fundamental role in
chromosome assembly and to a novel view of mitotic
chromosome structure. Here we briefly describe the con-
densin complex (for a recent review, see [41]) and focus
on the role of histone amino termini in chromosome
assembly and on newly developed biophysical tech-
niques for studying chromosome structure.

Chromosome condensation: the condensin complex 
A pivotal finding regarding mitotic chromosome conden-
sation came from the identification of the condensin
complex [42,43] as a key player in the process. Condensin
is required for proper chromosome condensation and 
segregation [43–45] and its property of inducing ATP-
dependent positive supercoiling in closed circular DNA
[46,47•] has led to the suggestion that chromosome con-
densation results from the generation of a global positive
writhe. At present, however, the mechanism by which
condensin acts on the chromatin template is unclear.

Core histone amino termini, but not histone H1, are
essential players in mitotic chromosome condensation
Linker histone H1 is heavily phosphorylated at the begin-
ning of mitosis and dephosphorylated after anaphase,
suggesting that the histone and its phosphorylation state
could be causally involved in chromosome compaction
[48]. Neither chromosome condensation nor nuclear
assembly are affected by the absence of linker histones in
either Xenopus extracts [49,50], or Tetrahymena [51], howev-
er, thus arguing against a causal role of histone H1 in these
processes. Rather, the core histone amino termini appear to
play a critical role in chromosome condensation [52].
Chromosome assembly in Xenopus extracts was inhibited
by adding intact but not ‘tailless’ exogenous nucleosomes
to the reaction, the efficiency of inhibition being different
for each individual histone tail. These data suggest that
chromosome assembly factors are recruited by nucleo-
somes through the histone tails. Neither topoisomerase II
nor condensins were found associated with exogenous
nucleosomes, indicating that other critical assembly factors
remain to be identified.

Mitotic chromosome condensation requires
phosphorylation of histone H3 tail at serine 10
Histone H3 exhibits site-specific phosphorylation at serine
10 during mitosis [53]. The use of phosphoepitope-specific
antibody has demonstrated that this histone H3 modifica-
tion is coupled tightly to the initiation of chromosome

Figure 2

A model for the structure of mitotic chromosome based on elasticity
measurements. The chromosome contains a few rigid axes to which
the ‘soft’ chromatin is anchored. The axes are very thin (<20 nm), have
a great latent length, and are built of proteins or protein complexes
with elastic properties similar to that of titin (i.e. formed of repetitive
domains), which can be unfolded upon application of force. Potential
candidates are titin itself [62•] and SMC (structural maintenance of
chromosomes) complexes.
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condensation but is not required for the maintenance of
chromosome compaction [54]. Moreover, a causal relation-
ship between histone H3 phosphorylation and chromosome
condensation has been identified in Tetrahymena [55••]. A
mutant in which histone H3 cannot be phosphorylated
exhibited abnormal chromosome condensation and segre-
gation, demonstrating that phosphorylation of histone H3
at serine 10 is required for proper chromosome dynamics. A
second mitotis-specific phosphorylation site at serine 28 of
histone H3 was identified recently [56] but its role has yet
to be determined. Two candidate kinases responsible for
the mitotic phosphorylation of histone H3 serine 10 have
been proposed: the NIMA kinase [57] and the Ipl1/aurora
kinase [58].

Mechanical properties of chromosomes
Promising biophysical approaches for quantifying the 
elasticity properties of mitotic chromosomes have been
developed recently, providing important insights into their
underlying structure. Using a novel micropipette technique
[59,60], mitotic chromosomes in cultured newt lung cells
were found to be highly extensible objects, exhibiting
reversible deformation upon stretching up to 10 times their
original length. Further informative studies have used ‘chro-
mosomes’ assembled in Xenopus extracts in which it was
possible to measure both the longitudinal deformability and
the bending rigidity of individual chromosomes [61••].
These chromosomes also were found to be highly extensi-
ble — they could be stretched up to 100 times their original
length without disruption. They were also very flexible, the
measured chromosome persistence length being only a few
fold larger than the diameter. The relationship between the
measured longitudinal deformability and the bending rigid-
ity was remarkable in that chromosome rigidity was
2000 times less than that calculated from the experimental
force–extension curve. These data best fit a model in which
chromosomes are constructed of thin elastically-deformable
rigid axes surrounded by a soft chromatin envelope
(Figure 2). The elastic properties of the axes can be approx-
imated by titin-like molecules and genetic evidence has
been presented indicating that mutations in a Drosophila
titin homolog disrupt chromosome condensation and mito-
sis [62•]. Native and in vitro assembled chromosomes had
very similar elastic properties, suggesting an essentially
identical underlying structure, quite different from the
widely discussed scaffold loop [63] and hierarchical helical
folding [64] models of chromosome structure.

Conclusions
Further application of the novel approaches discussed above
promises to inspire a fresh look at many aspects of chromatin
secondary and tertiary structure. Problems such as local sec-
ondary structure and chromosome architecture for which no
incisive techniques were previously available, now appear
amenable to rapid advances. As we progress from an essen-
tially one-dimensional concept of nucleosomal arrays with
bound regulatory complexes to a higher-resolution 3D view,
it will be essential to consider nuclear structures and events

in the context of the conformational dynamics of mononu-
cleosomes [65] and polynucleosomes (see Hayes and
Hansen, this issue [pp 124–129]). The extremely rapid flux
of nuclear components that is now becoming apparent from
in vivo observations [66,67•,68] is a further indication that
chromatin should be viewed in terms of its dynamic equilib-
rium system rather than as a static structure. Modeling,
especially using time-resolved approaches [22••,69] will
become increasingly important in this endeavor, and is now
being creatively applied to tertiary [70–72] as well as 
secondary chromatin structures.
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